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Abstract-In many practical engineering applications, relatively stiff, long, circular cavities are lined
with more compliant liner shells. Pressure applied through the porous walls of the confining medium
can cause buckling of the shells. Such buckling is usually local in nature and occurs at a section
with the biggest geometric imperfection. The paper presents experimental evidence which dem­
onstrates that, once such a shell has been locally dented, a buckle which propagates within the
confines of the cavity can be initiated. Such a buckle has the potential of completely collapsing the
liner. The lowest pressure at which this buckle will propagate is established experimentally through
a parametric study of the problem. The phenomenon is found to be physically similar to the
propagating buckle problem which can develop in offshore pipelines. A difference is that in the case
of the confined shell, the instability is shown to have a strong geometric dependence and, as a result,
it can be developed in the case of thin elastic as well as elasto-plastic shells.

INTRODUCfION

In a number of practical engineering applications, long, thin-walled metal shells are used
as liners of relatively stiff circular cylindrical cavities. In most of these applications, the
liner is designed to be in contact with the cavity wall. Examples of such applications are:
oil, gas, steam and water well casing; steel lining for tunnels and ducts used for transporting
gases and liquids at hydroelectric plants, power stations, nuclear reactor plants, etc.; steel
pipes cladded with a thin layer of noncorrosive metal to protect the main structure from
the corrosive fluids it transports, etc. In all these applications, conditions can develop that
lead to buckling of the liner which is exhibited in the form of a local inward deformation.
Although the conditions for buckling vary from application to application, differential
expansion of the liner and the cavity material and the build up of pressure between the
confining cavity and the shell seem to represent the two main causes oflocal buckling. For
the case of a cladded pipe or other applications of similar geometry, buckling of the thin
liner can also result from severe deformations of the outside shell.

A number of investigators[I-4] idealized local buckling of such confined shells as a
thin-walled, elastic ring in a rigid cavity and proceeded to establish engineering type design
criteria to ensure the safety of liners from pressure-induced buckling. A great deal of insight
into this class of problems can also be gained from studies of the stability of confined rings
under thermal and inertialloads[5-l0]. It was shown that the load-deflection response of
such rings exhibits a limit load type of instability which is a function of the geometry of
initial imperfections that may exist. More recent studies of confined shells[l1, 12] and
rings[13] under external pressure, have shown the stability of the pressurized confined
structure to be similarly affected by the presence of initial geometric imperfections.

The main conclusion drawn from these studies is that given geometric imperfections,
which are always present in the types ofstructures discussed here, buckling can occur which
will result in a localized separation of the liner from the wall. Similar liner damages can
also be caused by ground formation movements. These can be due to time-dependent
settlement of the ground or due to earthquakes or other transient causes of ground move­
ments.

This paper addresses the question of what the consequences would be, should hydro­
static pressure somehow develop between the confining wall and a locally damaged confined
shell. Experiments carried out on model shells have revealed that conditions exist under
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which the liner can develop a buckle that propagates. The buckle gets initiated from the
weakened section of the shell in the region of a local buckle or damage, and propagates
upstream and downstream of that point. Given a source of pressure, the complete length
of shell can potentially be destroyed.

The existence of the phenomenon will be demonstrated experimentally. It will also be
shown that a well-defined pressure exists which has to be exceeded before the buckle
propagates. This critical characteristic pressure of the shell has been given the name
"Confined Propagation Pressure" (Ppc). An experimental parametric study of this pressure
is presented.

The "Confined Propagating Buckle" has great similarities with the problem of the
propagating buckle in offshore pipelines studied by a number of investigators[l4-l9] in the
past few years. The similarities and differences of the two problems are pointed out and
discussed.

THE PROBLEM

The purpose of a liner shell varies from application to application. As a result, the
diameter-to-thickness ratio of interest also varies from 500, for certain large tunnels in
power stations, down to 10 for casing of very deep oil wells. A short description of some
of the applications is given below in the way of motivating the problem and also guiding
the reader through the assumptions and idealizations made in both the experimental and
analytical work that follows.

In the case of well casing, the steel liner's main purpose is to maintain the integrity of
the circular geometry of the well. It is designed to protect the operational tubes of the well
inside it from creep of the surrounding ground, falling debris, retreating ground formations,
and external pressure from rising water levels or gas from the ground around the well. The
actual load conditions faced by the casing are very difficult to predict and vary from well
to well. Casing is thus typically designed to resist collapse under hydrostatic pressure
equivalent to a water head equal to the depth.

Wells vary in diameter from 10 to 36 in. (0.25-0.90 m) for water wells and from 8 to
18 in. (0.20-0.45 m) for oil and gas wells. Typically, the casing is 1-2 in. (25-30 mm) smaller
in diameter than the nominal size of the hole. Creeping formations, falling debris, etc., can
close the original gap in many places along the length of the well. In many wells, the casing
is grouted with cement either along the whole or part of its length. This usually consists of
forcing cement into the gap between the casing and the wall. As expected, grouted casing
has higher resistance to buckling by external pressure[20] than ungrouted casing.

Texter[2l] and other investigators have reported collapse failures ofcasings. According
to Texter, two typical failure modes have been observed in the field. He calls them the
"ribbon" and "trough" modes. The "ribbon" is a "dogbone" (n = 2) mode of collapse
commonly obtained in collapse and collapse propagation experiments on tubes under
external pressure. An example of the "trough" mode, as it affected a string of casing 60 ft
(18 m) long, is shown in Fig. I (reproduced from Texter's paper[2l], courtesy API). It has
the typical V-shaped collapsed cross-section common to cylindrical shells buckled in a
cylindrical confining cavity. Similar collapse failures, in which "several" strings of casing
were found collapsed, have been reported by others. The reported "large length" of col­
lapsed casing involved suggests that perhaps something more than just classical buckling
of the structure may have been involved in these failures. An alternative possible scenario
will be suggested in the light of the experimental observations that follow.

The second class of problems lies at the other extreme of the Dlt range. It concerns
lining shells for long, large-diameter underground shafts constructed at large power stations.
Reference [2J gives a good review of these applications. Due to the large diameter (several
meters across) of these structures, it has been found more economical to drill circular
tunnels into the ground. The tunnels are lined with a thin-walled (Dlt'" 300-500) steel
shell. The gap between the tunnel wall and the liner is filled with concrete grout. Thus, the
liner's main purpose is to contain the flow. The loads caused by the internal pressure are
reacted mainly by the concrete and the rock around it. Although the shafts usually operate
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under internal pressure, they are often dewatered. During this process, and due to the
porous nature of the rocks and the presence of cracks in the concrete, pressure can
develop between the liner and the confining cavity, which can lead to buckling. Similar
but smaller in diameter lined ducts were reported to have experienced buckling failures
in [I, II, 12].

As in the case of the casing, it will be shown again that, if continuous flow of water at
a minimum pressure is available, such local buckles can initiate much more catastrophic
collapse failures.

Cladded pipes are very similar structures. External pressure can be exerted on the thin­
walled liner by corrosive gases which form between the shell and the liner.

With this short review of some of the applications, we proceed to demonstrate that
such shells can develop a buckle which propagates and identify some of the characteristics
of the problem.

THE CONFINED PROPAGATING BUCKLE

In order to demonstrate the phenomenon, it was necessary first to establish exper­
imental conditions which simulate those that exist in the problems outlined above. The
problem geometry can be idealized as a long, circular cylindrical shell surrounded by a
relatively stiff contacting medium. Drawn, seamless, metal tubes with diameters ranging
from 1.25 in. (32 mm) to 4.0 in. (102 mm) were used to model the liners. A solid cylinder
of plaster of paris was molded around each tube in the following fashion. A thick steel tube
cut in two halves along a generator was used as the mold. The final assembly, consisting of
the liner tube, the plaster and the steel mold, is shown schematically in Fig. 2. The tube was
well lubricated prior to pouring the plaster in order to reduce the friction between the
plaster and the tube wall. Postmortem examination of the tube and plaster indicated that
this molding procedure yielded contact with a minimum of friction.

Plaster of paris was selected because it retains its strength in water and dries much
faster than cement (about 12 h). The hardness of this type of plaster is quite high. Results
from a comparative experiment using cement showed no quantifiable effect on the
measured variables from the two grout materials. The steel mold was left in place to
ensure that no cracking of the plaster occurred during the experiment.

Since the goal of this study was to demonstrate the phenomenon and establish the
confined propagation pressure, no attempt was made to simulate the initiation process as
it occurs in practice. Instead, it was opted to initiate the buckle on a section of tube left
outside the confinement by physically denting it, as shown in Fig. 2. The confined length
of the test specimen was always longer than 25 tube diameters. The unconfined section was
5-15 diameters long.

~xperitnentalprocedure

The experiments were conducted under volume control conditions in order to ensure
quasistatic propagation conditions. The assembly of tube, plaster and steel mold shown in
Fig. 2, was placed in a high-pressure testing facility. The facility had an internal diameter
of 7 in. (0.178 m) and a working pressure of 10,000 psi (690 bar). The vessel was completely
filled with water and pressurized using a positive displacement water pump. The specimen
was closed at both ends, but the inside of the tube was vented directly to the atmosphere
to ensure that the internal pressure was kept at the same reference level during the collapse
process.

During the experiment, the pressure in the tank was monitored with a pressure trans­
ducer. A typical time-pressure history of the experiments is shown schematically in Fig. 3.
The section ofpipe outside the confinement collapsed first. The collapse proCess was initiated
from the inflicted damage. The value of pressure PJ represents the initiation pressure for
that imperfection. During the initiation process, completed by T2, the damaged section
locally deforms into the profile a propagating buckle propagates (see [J 6]). This profile is
one that gradually transforms the originally circular tube cross-section into a "dogbone"
shaped collapsed section.
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Fig. 2. Test specimen and confinement assembly.

Beyond T2, the buckle propagates at a constant pressure which represents the propa­
gation pressure (Pp) of the given tube. Propagation ceases once the buckle has reached the
edge of the confinement. If pumping water into the vessel is continued, a sharp rise in
pressure is experienced. The rise is not instantaneous, because a relatively small volume of
water is taken to flatten the already collapsed section of pipe further. The confined section
of pipe remains practically undisturbed until time T4• (In fact, water may creep between
the interface of the tube and plaster and pressurize the tube to a certain degree, but this
does not have any effect on the events described here.)

At some pressure, PIC (initiation pressure of confined propagation) the flattened
section of tube adjacent to the beginning of the confinement snaps into a U shape enabling
the buckle to start penetrating the confinement. Once this profile is fully developed, steady
state conditions are quickly established (typically in less than 5 diameters from the edge of
the confinement). The pressure stabilizes at a new plateau at which the whole length of the
confined tube can be collapsed. The value ofthis pressure has been given the name "Confined
Propagation Pressure" (Ppc)'

The rate at which the confined buckle propagates is, at all times, controlled by the rate
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Fig. 3. Schematic representation of a typical quasistatic confined propagation experiment.
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at which water is pumped into the pressure vessel. This rate was kept at a low enough level
to ensure that only 2-3 diameters of the tube length were collapsed per min.

Figures 4(a) and (b) show a postmortem examination of the test specimen. The
geometric integrity of the plaster is clearly seen to be retained.

Figure 5 shows a picture of the profile of propagalion of the confined propagating
buckle. The profile transforms the originally circular cross section of the tube into a U­
shaped collapsed section (the confinement was taken away). The length of this profile is
typically 3-5 diameters. Figure 6 shows slices of a tube cut through the profile indicating
the sequence of configurations involved in the collapse process.

A separate experiment was carried out in order to obtain visible evidence of the collapse
process in progress. A 1.5 in. (38 mm) hole was bored into a long transparent acrylic rod.
The rod had a diameter of 4 in. (0.10 m). A thin-walled tube was fitted into the cavity. [A
gap of maximum size of 0.002 in. (0.05 mm) had to be allowed between the acrylic and the
tube.] The confined tube was placed in a transparent pressure vessel, and a buckle was
initiated and propagated using the procedure described above. The progress of the buckle
was recorded photographically during propagation. Edited results from this experiment are
assembled in Fig. 7. The development of the steady state propagation process is clearly
visible. Due to the imperfect contact that existed in this experiment, the recorded confined
propagation process will not be quoted here. It should, however, be pointed out that gaps
between the cavity wall and the tube tend to lower PPC' The magnitude of this effect has
not been quantified at this stage.

In completing this section, it is again pointed out that the particular confined buckle
initiation process, chosen in the experimental procedure described, is not one that represents
well the way buckles are initiated in the practical applications described in the previous
section. As already mentioned, most such buckles would be initiated from within the
confines of the cavity. It is, however, emphasized that the steady state confined propagation
process, the identification of which was the main purpose of this study, is independent of
the initiation process. The results that follow should be viewed in the spirit of this comment.

Experimental results
A series of experiments were carried out using commercially available seamless, drawn

tubes. Two materials were used, aluminum 6061-T6 and stainless steel 304. For each
material, experimental results were obtained for a number ofdifferent diameter-to-thickness
ratios (D/t) between approximately 20 and 100. Longitudinal test specimens cut from the
tubes were used to obtain stress-strain curves for each tube tested. Wall thickness variations
ofmax IM/tl ;: 8% existed in the tubes tested. As a result, the confined propagation pressure
was occasionally position dependent. This source of error was minimized by using mean
values for D and t in the reduction of the data. The measured confined propagation
pressures of the two groups of test specimens are listed in Tables I and 2 together with their
material and geometric parameters. The stress-strain curves of the test specimens of each
material group had approximately the same elastic modulus (E) and hardening parameter
(n) but different yield stress (eTo) (see Table 3). In view of the heavy plastic deformation
involved in the collapse process, this difference can be important. Thus, the propagation
pressure was normalized by the measured yield stress (eTo-yield stress as defined by the
0.2% strain offset) of each tube.

The experimental results are plotted as a function of the tube D/t on logarithmic scales
in Fig. 8. An attempt is made to fit these with a power law represented by the least squares
straight lines shown, i.e.

Ppc = A (!.-)II.
eTo D

(1)

The aluminum results can be seen to be well represented by this relationship except for D/t
values beyond 100. In the case of stainless steel, the scatter in the results is much bigger. In
addition, for D/t values beyond approximately 60, the results seem to deviate from the



Table l. Aluminurn test specimen properties and confined propa-
gation pressures measured

D D PI'< PI'< xlO J
in. (mm) psi (bart)

(To

1.753 21.12 1830 37.35
(44.53) (126.21)

2 1.498 25.82 1080 24.0
(38.05) (74.48)

3 1.748 26.89 1005 22.33
(44.40) (69.31)

4 1.124 32.11 659 14.64
(28.55) (45.45)

5 1.250 35.71 555 12.33
(31.75) (38.28)

6 1.003 50.15 261 5.80
(25.48) (18.00)

7 1.497 53.46 219 4.87
(38.02) (15.10)

8 1.496 69.58 132 2.93
(38.00) (9.10)

9 2.75 91.70 39.0 1.54
(69.9) (2.69)

10 3.00 106.5 26.5 1.07
(76.2) (1.83)

II 4.00 114.3 31.5 0.797
(102) (2.17)

t I bar lOS N mm- 2 = 14.50 psi.

Table 2. Stainless steel specimen properties and confined propa-
gation pressures measured

D D PI'< PI'< X IO J
in. (mm) - psi (bart)t (10

1.002 22.99 2103 44.37
(25.45) (145.0)

2 1.002 29.04 1258 27.35
(25.45) (86.76)

3 1.253 34.81 778 23.22
(31.83) (53.66)

4 l.ool 35.75 808 17.96
(25.43) (55.72)

5 1.002 48.87 422 11.25
(25.45) (29.10)

6 1.504 49.97 524 11.93
(38.20) (36.14)

7 1.502 51.79 321 7.52
(38.15) (22.14)

8 1.374 68.70 317 2.73
(34.90) (21.80)

9 1.495 71.19 126 2.72
(37.97) (8.690)

10 1.750 77.78 128 2.84
(44.45) (8.828)

II 1.500 93.75 77 1.56
(38.10) (5.310)

t I bar 10' N mm- 1 = 14.50 psi.

Table 3. Additional material properties of test specimen (mean
values)

Young's modu. (E) Hardening para.
psi (N mm- 2

) (n)

Aluminum 9.8 x 106 31.5
6061-T6 (67.6 x W)

Stainless steel 26.8 x 106 13.6
304 (185 x W)

Mylar 0.735 x 106

(5.07 x W)
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(a)

(b)

Fig. 4. Test specimen after experiment:
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Fig. 5. Profile of confined propagating buckle (D/I "" 25.8. AL-6061-T6).

Fig. 6. Sections through profile ofconfined propagating buckle (DjI "" 53.4, AL-606I-T6).

Fig. 7. Confined buckle propagation (D/I "" 53.4, AL-6061-T6).
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Fig. 9(a). Initiation process.

Fig. 9(b). Stcady-slatc propagation of a buckle in a confined thin-walled mylar shell (D/I = 182).
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Fig. 8. Experimental confined propagation pressures as a function of D/t.

power law. The values of A and pobtained are as follows:

Material A p

Aluminumt
Stainless steelt

26.07
18.29

2.15
1.92

t Specimens 1-9, Table I.
t Specimens 1-7, Table 2.

In order to demonstrate that the phenomenon is strongly influenced by geometric
factors, separate experiments were performed in which thin-walled mylar tubes were tested.
For this material, the phenomenon takes place strictly in the linearly elastic regime. The
experimental set-up was very similar to the one used for the metal tubes. Due to the flexible
nature of these tubes, a solid mandrel was used to support the structure during the molding
stage. The mandrel was later removed and the tube sealed at both ends. The tubes had a
mean diameter of 1.82 in. (46.3 mm) and wall thickness of 0.010 in. (0.25 rom). The
measured confined propagation pressure was 0.55 psi (0.038 bar). As a result, the experiment
was carried out by evacuating air in a controlled fashion from inside the tube.

The mechanism of buckle propagation was very similar to what has been described
for metals. This is in sharp contrast to the behavior of propagating buckles described in
[14-19] which only occur if the material stress-strain curve is nonlinear. The reasons for
this difference will be explained below.

A demonstration of the initiation and propagation process of such a buckle in a thin
mylar elastic shell confined in a transparent acrylic tube is shown in Fig. 9. The characteristic
U shape of the buckled tube is clearly visible. The length of the transition regime can be
seen to be substantially longer than that of Fig. 5.

SAS 22/12-N
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As stated earlier, if a buckle is initiated in a constant pressure environment at a value
of pressure higher than the confined propagation pressure of the tube, the buckle will
accelerate to steady state in a few diameters and will proceed to propagate at a constant
velocity. These comments come from observations made in the lab. in the course of the
experimental program described above. No measurements have as yet been carried out
under dynamic conditions.

MODELING OF THE PROBLEM

Prediction of the steady state quasistatic propagation ofa confined buckle by analytical
means is rather complicated. A complete formulation of the problem must deal with the
large deflections exhibited during the collapse process (see Figs 5 and 6), the inelastic nature
of the tube material, the stability issues involved and the inherent contact problems. In the
case of the familiar problem of a propagating buckle in offshore pipelines[18, 19], a great
deal of insight to the problem was developed by examining the large deflection collapse of
a ring (or long tube section) under external pressure (see [22, 23]). Encouraged by this
success, a similar approach is followed for the confined propagating buckle.

The problem solved[13] consists ofa thin, inextensional ring confined in a rigid, smooth,
contacting, circular cavity (see Fig. 10). The ring has a small initial geometric imperfection
which causes it to be locally detached from the confinement. The cavity formed is pressurized
with fluid pressure (P). A numerical solution procedure was developed for studying the
progressive collapse of the ring under this pressure. The problem was formulated through
a large deflection nonlinear analysis. Three different material models were examined:
linearly elastic, nonlinear elastic and elastic-plastic models.

Placed in this context, the problem reduces to a nonlinear two-point boundary value
problem which was solved numerically, using an incremental procedure. Details of the
solution can be found in [13]. A sequence of collapse configurations for such a ring are
shown in Fig. II. The associated pressure-change in volume response is shown schematically
in Fig. 12. In the presence of a small initial imperfection, the response is characterized by
a sharp rise to a limit load and a sharp drop down to a pressure plateau at which most of
the deformation occurs. After the first point on the ring circumference touches the opposite
wall, the response becomes stable again as shown in the figure.

For the linearly elastic case, the limit load is strictly a function of the initial imperfection.
It is affected by both the amplitude and the shape of imperfection used. For the idealized
inextensional ring case studied, the perfect geometry case is predicted to have no buckling
load. The stable (zero volume change axis) and unstable branches only cross at an infinite
value of pressure (see [7]). This idiosyncrasy of the problem as formulated will be avoided

Fig. 10. Initial geometry of inextensional confined ring.



Fig. II. Confined ring collapse configuration sequence (linearly elastic case).
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in what follows by considering rings to always have a small initial imperfection of fixed
geometry.

Figure 13 shows how the crown displacement varies with pressure. Results for linearly
elastic, nonlinear elastic and elastic-plastic materials are included. For the last two, a
linearly strain hardening material with strain hardening modulus (E'), 80 times less than
the Young's modulus, was used. The nonlinearity in the stress-strain behavior causes a
reduction of the limit load. In addition, differences in the unstable response are observed.
However, the general characteristics of the response remain common to all material models.
It is also interesting to observe the similarity in the predicted collapse configurations in Fig.
II and those prescribed by the profile of the confined propagating buckle in Fig. 6.

From the above discussion, it is clear that the maximum pressure an initially imperfect
confined ring (or long tube) can sustain is represented by the limit pressure, PL (Fig. 14).
For pressures lower than PL , the ring is stable. However, it is observed that for each value
of pressure Pm < P < PL three equilibrium states are possible. Under constant pressure
conditions, the ones on the extreme left (A) and right (C) of the response are stable. The
intermediate one (B) is unstable. Thus, if under constant pressure conditions equilibrium
state A is adequately disturbed, the ring will snap to equilibrium s~ate C. This characteristic
of the response is fundamental to propagating buckle problems (see [17-19]).

In the case of a long confined tube, pressurized externally, it is intuitively obvious that
the collapse process will be initiated at the section with the biggest local imperfection. Once
the local limit pressure is reached, the section locally buckles. Further collapse of the tube
will depend strictly on whether the applied pressure is subsequently higher or lower than
the confined propagation pressure of the tube. If the pressure is at or above PPC' then the
locally buckled section acts as the disturbance that progressively forces the tube section
adjacent to it to jump from equilibrium state A to equilibrium state C in the process
collapsing that section. The profile of propagation can in fact be viewed as a series of rings
of varying degrees of deformation (see Fig. 6), each one assisting the one downstream from
it to cross the energy barrier between A and B.

For certain classes of materials, the pressure-change in volume response can be used
in conjunction with the energy argument developed in [18] to establish the confined propa­
gation pressure of the tube. For the purposes of this analysis, it is convenient to distinguish
between elastic path-independent material behavior and inelastic path-dependent behavior.

(a) Elastic material
Consider the steady state propagation of a confined clastic tube. At a critical pressure,

I
A'essure

(P)

I ~

Po _ - - _ - - - - - - - - - - - - - - - - - - - - - _A,· A2
PC ABC

- Change In Volume (t'v)-

Fig, 14. The Maxwell construction for path independent materials,
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PPC' the buckle propagates quasistatistically. Let the buckle propagatc by a unit Icngth.
Thus, a unit length of the tube crosses from A to C in Fig. 14. In doing so, the collapsed
section reduces its volume by

Thus, the work done by the external pressure in the process is given by

For an elastic material, the work done during a defonnation process is independent of
the loading path and depends strictly on the initial and final states. State C, in Fig. 14, can
be reached from A by moving along the path calculated (i.e. up to the limit load, down to
Pm and up to C); or by moving along path ABC (constant pressure path). The latter
represents the propagation process. Since the first has already been calculated, it can be
used to calculate the energy absorbed by the unit length of collapsed tube. Thus, equating
internal and external work done, the following expression can be written for Ppc :

(2)

It is easy to show that expression (2) requires that Ppc be at a level which makes areas Al
and A 2, in Fig. 14, equal (Maxwellline[18]).

The pressure-change in volume response of a confined linearly elastic ring having
modulus E, diameter D and wall thickness I is shown in Fig. 15. This solution suitably
extended to a plane strain tube, by scaling the pressure by the factor (l-v2

)-' (v being the
Poisson's ratio of the material), was used in the procedure described to calculate a value
for the confined propagation pressure Ppc' It was found that

(3)
~ 3.64E (1)3

Ppc= (l-v2) D .

Equation (3) predicts Pre = 0.5 psi for the mylar tube tested (Table 3). This is 10%

10

5

.30.25.20.15.10.05
0+------,--...,.----,.--...,.----,-----1

0.0

--AV

Fig. 15. Pressure vs volume change (linearly elastic case).
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lower than the value measured. It must be emphasized that the measured propagation
pressures of these tubes are more susceptible to errors introduced by the presence of friction
and other factors due to the very low value of the propagation pressure.

The same procedure can be used for calculating the confined propagation pressure of
nonlinear elastic tubes.

(b) Elastic-plastic material
All metal tubes tested exhibited plastic irreversible deformations. Plastic material

behavior is loading path dependent. Loading path independence is a necessary condition
for the application of the energy balance argument developed above. However, for certain
loading paths (proportional or "nearly" proportional stress histories), the assumption of
path independence of material behavior is correct even for elastic-plastic materials. Ref­
erences [18, 19] showed that, in the case of a propagating buckle in a long tube under
external pressure, the profile of propagation induces nearly proportional loading paths; as
a result, the energy balance argument mentioned was used to obtain a good engineering
approximation to the propagation pressure.

Unfortunately, that success was not repeated in the case of the confined propagating
buckle. An indication that this problem may be more complicated is given by the large
difference, exhibited in Fig. 13, between the response from a bilinear elastic material and a
multilinear inelastic material. This difference is due to the fact that large sections of the
circumference undergo unloading and reverse bending after being bent into the plastic
range. Examination of the profile of confined buckle propagation (Figs 5 and 7) clearly
indicates that the buckled section also undergoes rather severe bending and stretching in
the axial direction. The membrane and bending deformations lead to the conclusion that
the loading paths, in a good part of the shell, are non-proportional. As a result, the energy
balance argument fails.

DISCUSSION OF RESULTS

The experimental program described, demonstrated that under constant pressure con­
ditions a long cylindrical confined shell can develop a propagating buckle. The buckle
propagates within the confining cylindrical cavity and collapses the shell to a degree that
renders it useless. A critical pressure has been identified, below which the buckle will not
propagate. This pressure has been given the name confined propagation pressure. A limited
parametric study indicates a power law relationship between Ppc and the tube D/t as follows:

(4)

For material and geometric combinations for which the phenomenon occurs in the elastic
range, the value of {J in (4) is - 3. For combinations governed by inelastic effects, a smaller,
well-identified value of {J has been obtained (- 2.15 for AL-6061-T6, - 1.92 for SS-304).
For each material, an intermediate range of D/t value exists for which {J smoothly changes
values from - 3 to the ones quoted above. It seems that test specimens 8-11 in Table 2
belong to this intermediate range of D/t values for stainless steel 304; this would explain
the observed deviation of these results from the power law developed (see Fig. 8).

The phenomenon has been explained by observing the pressure-deflection response of
a confined ring. For elastic materials, it has been shown that this response can form the
basis for the exact prediction of PPC' The energy balance argument on which this solution
was based was found to be inappropriate for elastoplastic materials.

Finally, we return to Fig. 1. In view of the findings of this work and the length of the
damaged casing reported in [21], it is suggested that the casing in question was buckled by
a confined propagating buckle. It is important to note that for typical steel shells having
D/t values less than SO, the confined propagation pressure can be substantially lower than
the collapse pressure of the unconfined tubes which is usually the design pressure for oil
well casing.
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